Hi @emidio ,
The most straightforward solution is using multi-temporal evalscript with Batch Processing. This will produce multi-band TIFFs (each band represents data of an acquisition) in AWS S3 bucket . From here you can either download TIFFs to your local machine or directly read TIFFs from the bucket.
To create a multi-temporal evalscript, we have an example script that demonstrates how to request data as a time series in a request. Below is an example evalscript to request raw bands data as a time series that you need. To learn more about evalscript, I suggested going through the Evalscript section of our documentation and the listed tutorials.
//VERSION=3
// define inputs and outputs
function setup() {
return {
input: [{
bands: [
"B01", "B02", "B03", "B04", "B05", "B06",
"B07", "B08", "B8A", "B09", "B11", "B12",
"AOT", "SCL", "SNW", "CLD", "CLP", "CLM",
"viewZenithMean", "viewAzimuthMean",
"sunZenithAngles", "sunAzimuthAngles",
"dataMask"
],
}],
output: [
{id: "b01", bands: 1, sampleType: SampleType.FLOAT32},
{id: "b02", bands: 1, sampleType: SampleType.FLOAT32},
{id: "b03", bands: 1, sampleType: SampleType.FLOAT32},
{id: "b04", bands: 1, sampleType: SampleType.FLOAT32},
{id: "b05", bands: 1, sampleType: SampleType.FLOAT32},
{id: "b06", bands: 1, sampleType: SampleType.FLOAT32},
{id: "b07", bands: 1, sampleType: SampleType.FLOAT32},
{id: "b08", bands: 1, sampleType: SampleType.FLOAT32},
{id: "b8a", bands: 1, sampleType: SampleType.FLOAT32},
{id: "b09", bands: 1, sampleType: SampleType.FLOAT32},
{id: "b11", bands: 1, sampleType: SampleType.FLOAT32},
{id: "b12", bands: 1, sampleType: SampleType.FLOAT32},
{id: "aot", bands: 1, sampleType: SampleType.FLOAT32},
{id: "scl", bands: 1, sampleType: SampleType.UINT8},
{id: "snw", bands: 1, sampleType: SampleType.UINT8},
{id: "cld", bands: 1, sampleType: SampleType.UINT8},
{id: "clp", bands: 1, sampleType: SampleType.UINT8},
{id: "clm", bands: 1, sampleType: SampleType.UINT8},
{id: "vzm", bands: 1, sampleType: SampleType.FLOAT32},
{id: "vam", bands: 1, sampleType: SampleType.FLOAT32},
{id: "sza", bands: 1, sampleType: SampleType.FLOAT32},
{id: "saa", bands: 1, sampleType: SampleType.FLOAT32},
{id: "dm", bands: 1, sampleType: SampleType.UINT8},
],
mosaicking: Mosaicking.ORBIT
}
}
// update output bands to the total number of acquisitions within the input time range
function updateOutput(outputs, collection) {
const scenes = collection.scenes
if (scenes.length === 0) {
n_bands = 1;
} else {
n_bands = collection.scenes.length
}
Object.values(outputs).forEach((output) => {
output.bands = n_bands;
});
}
// write acquisition timestamps to userdata as an output
function updateOutputMetadata(scenes, inputMetadata, outputMetadata) {
let dates = []
scenes.forEach(scene => {
dates.push(scene.date);
})
outputMetadata.userData = {
dates: JSON.stringify(dates)
};
}
// collect values of all acquisitions for each requested band
function evaluatePixel(samples, scenes) {
let n_observations = samples.length;
let band_b01 = new Array(n_observations).fill(NaN);
let band_b02 = new Array(n_observations).fill(NaN);
let band_b03 = new Array(n_observations).fill(NaN);
let band_b04 = new Array(n_observations).fill(NaN);
let band_b05 = new Array(n_observations).fill(NaN);
let band_b06 = new Array(n_observations).fill(NaN);
let band_b07 = new Array(n_observations).fill(NaN);
let band_b08 = new Array(n_observations).fill(NaN);
let band_b8a = new Array(n_observations).fill(NaN);
let band_b09 = new Array(n_observations).fill(NaN);
let band_b11 = new Array(n_observations).fill(NaN);
let band_b12 = new Array(n_observations).fill(NaN);
let band_aot = new Array(n_observations).fill(NaN);
let band_scl = new Array(n_observations).fill(NaN);
let band_snw = new Array(n_observations).fill(NaN);
let band_cld = new Array(n_observations).fill(NaN);
let band_clp = new Array(n_observations).fill(NaN);
let band_clm = new Array(n_observations).fill(NaN);
let band_vzm = new Array(n_observations).fill(NaN);
let band_vam = new Array(n_observations).fill(NaN);
let band_sza = new Array(n_observations).fill(NaN);
let band_saa = new Array(n_observations).fill(NaN);
let band_dm = new Array(n_observations).fill(NaN);
samples.forEach((sample, index) => {
band_b01[index] = sample.B01;
band_b02[index] = sample.B02;
band_b03[index] = sample.B03;
band_b04[index] = sample.B04;
band_b05[index] = sample.B05;
band_b06[index] = sample.B06;
band_b07[index] = sample.B07;
band_b08[index] = sample.B08;
band_b8a[index] = sample.B8A;
band_b09[index] = sample.B09;
band_b11[index] = sample.B11;
band_b12[index] = sample.B12;
band_aot[index] = sample.AOT;
band_scl[index] = sample.SCL;
band_snw[index] = sample.SNW;
band_cld[index] = sample.CLD;
band_clp[index] = sample.CLP;
band_clm[index] = sample.CLM;
band_vzm[index] = sample.viewZenithMean;
band_vam[index] = sample.viewAzimuthMean;
band_sza[index] = sample.sunZenithAngles;
band_saa[index] = sample.sunAzimuthAngles;
band_dm[index] = sample.dataMask;
});
return {
b01: band_b01,
b02: band_b02,
b03: band_b03,
b04: band_b04,
b05: band_b05,
b06: band_b06,
b07: band_b07,
b08: band_b08,
b8a: band_b8a,
b09: band_b09,
b11: band_b11,
b12: band_b12,
aot: band_aot,
scl: band_scl,
snw: band_snw,
cld: band_cld,
clp: band_clp,
clm: band_clm,
vzm: band_vzm,
vam: band_vam,
sza: band_sza,
saa: band_saa,
dm: band_dm,
};
}